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The nonlinear Schrödinger evolution equation

We consider the problem
i∂tψ = −∆ψ − |ψ|p−2ψ, (t, x) ∈ [0,T [ × Ω,
ψ(t, x) = 0, (t, x) ∈ [0,T [ × ∂Ω,
ψ(0, x) = ψ0(x), ψ0 :→ C, x ∈ Ω

(NLSevol)

where
ψ : [0,T [ × Ω → C, Ω bounded domain in RN , N ≥ 1;
i2 = −1;
∂tψ is the derivative with respect to the time variable;
∆ =

∑
1≤i≤N ∂

2
xi is the Laplacian on Ω;

p > 2 is a real parameter.
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Conservation laws

At least formally, the L2 norm (the mass)

∥ψ(t, ·)∥2
L2 :=

∫
Ω

|ψ(t, x)|2 dx

and the energy

E
(
ψ(t, ·)

)
:= 1

2

∫
Ω

|∇xψ(t, x)|2 dx − 1
p

∫
Ω

|ψ(t, x)|p dx

are preserved during the evolution.
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Solitary wave solutions

Opposed to blow-up: solitary waves of the form

ψ(t, x) = eiλtu(x)

where u ∈ H1
0 (Ω; R) = H1

0 (Ω) is a solution of

− ∆u + λu = |u|p−2u. (NLS)

Some vocabulary:
λ ∈ R is the frequency of the solitary wave;
∥u∥2

L2 = ∥ψ(t, ·)∥2
L2 is its mass.
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Two problems

Problem
Given λ ∈ R, how to find a nonzero stationary wave of frequency λ?

Problem
Given µ > 0, how to find a stationary wave of mass µ?

Vocabulary: solutions with a prescribed mass are usually called normalized
solutions.
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Two functionals

We recall that the energy functional is given by

E (u) := 1
2

∫
Ω

|∇u|2 dx − 1
p

∫
Ω

|u|p dx .

Given λ ∈ R, we also define the action functional by

Jλ(u) := E (u) + λ

2

∫
Ω

|u|2 dx

= 1
2

∫
Ω

|∇u|2 dx + λ

2

∫
Ω

|u|2 dx − 1
p

∫
Ω

|u|p dx .
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Variational formulations

Proposition
Given 2 < p < 2∗ and λ ∈ R, solutions of frequency λ correspond to
critical points of Jλ on H1

0 (Ω).

Proposition
Given 2 < p < 2∗ and µ > 0, normalized solutions of mass µ correspond
to constrained critical points of E on the L2-sphere

Mµ :=
{

u ∈ H1
0 (Ω)

∣∣ ∥u∥2
L2(Ω) = µ

}
.

In the case of normalized solutions, the parameter λ in the PDE will
appear as a Lagrange multiplier associated with the constraint.
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Lower boundedness of the energy functional

Proposition
Let 2 < p < 2∗ and µ > 0. Then:

if 2 < p < 2 + 4/N,
inf
Mµ

E > −∞;

if 2 + 4/N < p < 2∗,
inf
Mµ

E = −∞.
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A classic result and two questions

Proposition
When µ > 0 and 2 < p < 2 + 4/N, then minimizers for E on Mµ exist,
have a constant sign and are normalized solutions of (NLS). They are
called energy ground states.

Question
Given µ > 0 and 2 + 4/N < p < 2∗, do there exist normalized solutions of
mass µ? Is there a least energy normalized solution?

Question
How to find sign-changing normalized solutions?

Answers: given by the results of the talk!
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The fixed frequency case

In the fixed frequency case, we are a priori looking for critical points of an
unconstrained functional.

However, the functional Jλ is not bounded from below on H1
0 (Ω), since if

u ̸= 0 then

Jλ(tu) = t2

2 ∥∇u∥2
L2(Ω) + λt2

2 ∥u∥2
L2(Ω) − tp

p ∥u∥p
Lp(Ω) −−−−→

t→+∞
−∞.
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The Nehari manifold
A common strategy is to introduce the Nehari manifold Nλ, defined by

Nλ :=
{

u ∈ H1
0 (Ω) \ {0} | J ′

λ(u)[u] = 0
}

=
{

u ∈ H1
0 (Ω) \ {0} | ∥∇u∥2

L2(Ω) + λ∥u∥2
L2(Ω) = ∥u∥p

Lp(Ω)

}
.

If u ∈ Nλ, then
Jλ(u) =

(1
2 − 1

p
)
∥u∥p

Lp(Ω).

In particular, Jλ is bounded from below on Nλ.

Proposition
Given λ > −λ1(Ω) and 2 < p < 2∗, then minimizers for Jλ on Nλ exist,
have a constant sign and are solutions of (NLS) having frequency λ.
They are called action ground states.
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Nodal action ground states

One defines the nodal Nehari set by

N nod
λ :=

{
u ∈ H1

0 (Ω) | u± ∈ Nλ(Ω)
}
.

It contains all sign-changing solutions of (NLS).

Theorem (Castro, Cossio, Neuberger 1997; Bartsch-Weth 2003)
Given λ > −λ2(Ω) and 2 < p < 2∗, then minimizers for Jλ on N nod

λ exist,
have two nodal zones and are solutions of (NLS) having frequency λ.
They are called nodal action ground states.
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Comparison of the two settings so far

Abbreviation: “ground state” → GS

2 < p < 2 + 4/N 2 + 4/N < p < 2∗

Positive solution Energy GS ?
Sign-changing solution ? ?

The fixed mass µ case

2 < p < 2 + 4/N 2 + 4/N < p < 2∗

Positive solution Action GS Action GS
Sign-changing solution Nodal action GS Nodal action GS

The fixed action λ case
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Action versus energy ground states (continued)

Theorem (Dovetta-Serra-Tilli 2022)
Let 2 < p < 2 + 4/N and Ω be bounded.
For any µ > 0, define

E(µ) := inf
u∈Mµ

E (u)

and, for every λ ∈ R, define

J (λ) := inf
u∈Nλ

Jλ(u).

Then, −E(2µ) is the Legendre-Fenchel transform of J . Namely, one has

−E(2µ) = sup
λ∈R

(
λµ− J (λ)

)
.
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Main message

In their paper, Dovetta, Serra and Tilli compare two families of solutions
whose existence is known a priori via minimization procedures: the action
GS and the energy GS.

Main message
The convex duality we just saw is a method !!!

More precisely:
using such a “convex duality argument” from the action ground states
when 2 + 4/N < p < 2∗ will also produce normalized solutions;

doing so from the nodal action GS will produce sign-changing
normalized solutions, which is new for all 2 < p < 2∗.
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Our result (for positive solutions)

Theorem (De Coster-Dovetta-G.-Serra 2025)
Let Ω ⊂ RN be open and bounded and, for every 2 < p < 2∗, let

Mp :=
{

∥u∥2
L2(Ω)

∣∣ u ∈ Nλ(Ω) and Jλ(u) = J (λ) for some λ ∈ R
}

be the set of masses of all action ground states. Then,

(i) if 2 < p < 2 + 4/N, then Mp(Ω) = (0,+∞);
(ii) if 2 + 4/N < p < 2∗, then there exist 0 < µp < +∞ such that

Mp = (0, µp].
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Isn’t that quite obvious?

One may argue that obtaining intervals of masses is a trivial consequence
of the intermediate value theorem.

This would be true if the map λ 7→ uλ mapping λ to the action GS had
good continuity properties, which is expected to be wrong in general!

In fact, this map is not even well-defined as action GS might not be unique.
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A miracle

Proposition (Key proposition)
Let µ > 0 and 2 < p < 2∗. Assume that λ∗ > −λ1(Ω) is a local
minimum of the map fµ : [−λ1,+∞) → R defined by

fµ(λ) := J (λ) − 1
2µλ.

Then, J is differentiable for λ = λ∗ and one has that J ′(λ∗) = µ, so that
all action ground states with λ = λ∗ have mass µ.

Our proof does not work for other types of critical points of fµ.

Here, minimizing is better than looking for any critical points!
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